Covering Graphs Using Trees and Stars
نویسندگان
چکیده
A tree cover of a graph G is defined as a collection of trees such that their union includes all the vertices of G. The cost of a tree cover is the weight of the maximum weight tree in the tree cover. Given a positive integer k, the k-tree cover problem is to compute a minimum cost tree cover which has no more than k trees. Star covers are defined analogously. Additionally, we may also be provided with a set of k vertices which are to serve as roots of the trees or stars. In this paper, we provide constant factor approximation algorithms for finding tree and star covers of graphs, in the rooted and un-rooted versions.
منابع مشابه
Mixed Covering Arrays on Graphs
We give upper and lower bounds on the size of mixed covering arrays on graphs based on graph homomorphisms. We provide constructions for covering arrays on graphs based on basic graph operations. In particular, we construct optimal mixed covering arrays on trees, cycles and bipartite graphs; the constructed optimal objects have the additional property of being nearly point balanced.
متن کاملPacking Plane Spanning Double Stars into Complete Geometric Graphs
Consider the following problem: Given a complete geometric graph, how many plane spanning trees can be packed into its edge set? We investigate this question for plane spanning double stars instead of general spanning trees. We give a necessary, as well as a sufficient condition for the existence of packings with a given number of plane spanning double stars. We also construct complete geometri...
متن کاملIncidence dominating numbers of graphs
In this paper, the concept of incidence domination number of graphs is introduced and the incidence dominating set and the incidence domination number of some particular graphs such as paths, cycles, wheels, complete graphs and stars are studied.
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملRoman domination excellent graphs: trees
A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...
متن کامل